منابع مشابه
Some Unusual Matrix Eigenvalue Problems
We survey some unusual eigenvalue problems arising in different applications. We show that all these problems can be cast as problems of estimating quadratic forms. Numerical algorithms based on the well-known Gauss-type quadrature rules and Lanczos process are reviewed for computing these quadratic forms. These algorithms reference the matrix in question only through a matrix-vector product op...
متن کاملEigenvalue Separation in Some Random Matrix Models
The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...
متن کاملSome Developments on Parameterized Inverse Eigenvalue Problems
A comprehensive survey of some recent results regarding parameterized inverse eigenvalue problems is given in this paper. Speciic topics include: additive and multiplicative inverse eigenvalue problems, classical inverse eigenvalue problems and generalized inverse eigenvalue problems. Both the theoretic and algorithmic aspects are reviewed. Some open problems are revealed to stimulate further r...
متن کاملA Density Matrix-based Algorithm for Solving Eigenvalue Problems
A new numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques, and takes its inspiration from the contour integration and density matrix representation in quantum mechanics. It will be shown that this new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Review
سال: 1973
ISSN: 0036-1445,1095-7200
DOI: 10.1137/1015032